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Prediction of Dynamics & Regulation
The new approach to the law of mass action does not require rate parameters but instead uses chemical 
potentials (1). Due to the statistical formulation of the theory, the approach can directly integrate 
metabolomics and proteomics data. 

Modeling Approach
u Optimization and Maximum Entropy Production

Observation of Dynamics & Regulation
Lower Left: The circadian cycle is approximated in (A) by the negative feedback loop in which the heterodimer WC-
1/WC-2 drives expression of frq which feeds back with other proteins (not shown) to depress WC-1/WC-2 activity.  

In (B), WC-1/WC-2, in turn, activate clock-controlled TFs (curved blue arrows) and these in turn regulate additional 
TFs, in all comprising a hierarchical network downstream from the clock. This transcriptional network, now largely 

described from ChIP-seq data for over 50 TFs, acts as a dynamic filter for time information generated by the 
circadian oscillator in (A).  In the aggregate the TFs within this transcriptional network act on downstream genes in 
a combinatorial manner to regulate their expression.  Shown in (C) is the heat map showing rhythmic expression of 

the Neurospora genome as determined by RNA-seq of samples collected every 2 hrs over 48 hrs in constant 
darkness., and in (D) the corresponding map for proteins whose expression is controlled by the clock.

Lower Right A quarter of expressed proteins are clock-regulated, but >40% of these do not arise from clock-
regulated transcripts. Contrary to predictions, rhythmic protein degradation plays little role in posttranscriptional 

regulation but instead rhythms arise from oscillations in translation. Our data highlighted the impact of the clock 
on metabolic regulation, with central carbon metabolism reflecting both transcriptional and posttranscriptional 

control and opposing metabolic pathways showing peak activities at different times of day. The experimental data 
demonstrate that the rhythmic proteins within the Pentose-Phosphate pathway peak in the circadian morning, 
while conversely, in glycolysis and the TCA cycle, the rhythmic proteins peak in the circadian evening. That is, the 

rhythmic proteins of glycolysis are in anti-phase to the rhythmic proteins of the Pentose-Phosphate pathway.

u Reinforcement Learning of Regulation
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The Marcelin Equation sets each of the 
decay rates of the forward and reverse 

forces to the same rate. Assuming the 
same decay rate for all reactions 

removes any kinetic bottlenecks in 
phase space of the system such that the 
dynamics are governed only by the 

thermodynamics 
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Overview
We report the computational prediction of regulation, metabolite levels and rate constants using a maximum entropy method [1], and the experimental detection of circadian regulation of proteins and transcripts [2]. The 
computational method is applied in four steps: (1) a new constrained optimization approach is used to obtain the maximum entropy distribution, (2) the predicted metabolite concentrations are compared to those 
generally expected from experiment using a loss function from which post-translational regulation of enzymes is inferred, (3) the system is re-optimized with the inferred regulation from which rate constants are 
determined from the metabolite concentrations and reaction fluxes, and finally (4) a full ODE-based, mass action simulation with rate parameters and allosteric regulation is obtained. The method is applied to central 
metabolism and the flow of material through the three competing pathways of upper glycolysis, the non-oxidative pentose phosphate pathway, and the oxidative pentose phosphate pathway are evaluated as a function of 
the NADP/NADPH ratio. 

To complement the simulations, experimental transcriptional and translational experiments performed over the circadian cycle of Neurospora. Transcriptional/translational feedback loops in fungi and animals drive 
circadian rhythms in transcript levels that provide output from the clock, but post-transcriptional mechanisms also contribute. We applied novel analytical tools to a long-duration, deeply-sampled, circadian proteomics 
time course comprising half of the proteome. The experimental data reinforces our simulations and demonstrate that the rhythmic proteins within the Pentose-Phosphate pathway peak in the circadian morning, while 
conversely, in glycolysis and the TCA cycle, the rhythmic proteins peak in the circadian evening. That is, the rhythmic proteins of glycolysis are in anti-phase to the rhythmic proteins of the Pentose-Phosphate pathway. 

Relaxing the Assumption of Maximum Entropy:  
1000 Models in ~30 min.

u Uncertainty Quantification
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Reaction flux through upper glycolysis and the pentose phosphate 
pathway as a function of the NADP/NADPH ratio. (Left) Low values of 
the ratio result in approximately equal flow of material through upper 
glycolysis and the non-oxidative branch of the pentose phosphate 
pathway. (M iddle) NADP/NADPH ratio of 1 results in more flow through 
the oxidative pentose phosphate pathway. (Right) A high value of the 
ratio results in the cycling of flow iteratively through the oxidative 
pentose phosphate pathway. 
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